0到360度三角函数值表 公式有哪些
三角函数值常用表是指在一定角度范围内,列出正弦、余弦、正切等三角函数的数值。常用角度包括0°、30°、45°、60°、90°等,在直角三角形中,三个角的度数总和为 180 度,其中一个角为 90 度,另外两个角的度数可以用三角函数来计算。
三角函数值常用表
三角函数值常用表是指在一定角度范围内,列出正弦、余弦、正切等三角函数的数值。常用角度包括0°、30°、45°、60°、90°等,以及它们对应的180°、270°、360°等角度。这些角度的三角函数值是基础数学中非常关键的常数,对于解决各种数学问题,尤其是在工程、物理和计算机科学等领域中至关重要。
以下是一些标准角度的三角函数值:
1. 0°(0弧度)
正弦(sin):0
余弦(cos):1
正切(tan):0(未定义,因为0/0形式)
2. 30°(π/6弧度)
正弦(sin):1/2
余弦(cos):√3/2
正切(tan):1/√3
3. 45°(π/4弧度)
正弦(sin):√2/2
余弦(cos):√2/2
正切(tan):1
4. 60°(π/3弧度)
正弦(sin):√3/2
余弦(cos):1/2
正切(tan):√3
5. 90°(π/2弧度)
正弦(sin):1
余弦(cos):0
正切(tan):未定义(因为0/0形式)
三角函数公式
直角三角形角度计算公式如下:
正弦函数:sin(A) = 对边 / 斜边
余弦函数:cos(A) = 邻边 / 斜边
正切函数:tan(A) = 对边 / 邻边
其中,A 为已知角度,对边为与角 A 对边的边,邻边为与角 A 邻边的边,斜边为三角形的第三条边。
计算角度
已知三角函数值,可以通过反三角函数计算对应的角度。反三角函数包括反正弦函数 (sin^-1)、反余弦函数 (cos^-1) 和反正切函数 (tan^-1)。
例如,若已知 sin(A) = 0.5,则对应的角度 A 可以通过反三角函数计算:
A = sin^-1(0.5) ≈ 30 度
其他三角函数
除了正弦函数、余弦函数和正切函数外,还有其他一些三角函数,包括:
余割函数 (sec):sec(A) = 1 / cos(A)
余切函数 (csc):csc(A) = 1 / sin(A)
矢割函数 (vers):vers(A) = 1 cos(A)