勾股定理的变式及应用

2021-03-11 09:48

一、勾股定理的变式及应用

1、勾股定理

(1)文字语言

直角三角形两直角边的平方和等于斜边的平方。

(2)符号语言

如果直角三角形的两条直角边长分别为$a$,$b$,斜边长为$c$,那么$a^2+$$b^2=$$c^2$。

(3)变式及应用

设直角三角形的两条直角边长分别为$a$,$b$,斜边长为$c$,则

$a^2=c^2-b^2$,$b^2=c^2-a^2$,

$c=\sqrt{a^2+b^2}$,$a=\sqrt{c^2-b^2}$,$b=\sqrt{c^2-a^2}$。

2、勾股定理的应用

(1)已知直角三角形的两边,求第三边。

(2)表示长度为无理数的线段。

(3)在数轴上作出表示无理数的点。

注:勾股定理只适用于直角三角形,所以常作辅助线——高,从而构造直角三角形。

3、勾股定理的逆定理

如果三角形的三边长 $a$,$b$,$c$满足$a^2+$$b^2=$$c^2$,那么这个三角形是直角三角形。

能够成为直角三角形三条边长的三个正整数,称为勾股数。若$a$,$b$,$c$是一组勾股数,则$ak$,$bk$,$ck$($k$是正整数)也是一组勾股数。

4、勾股定理的逆定理的应用

运用勾股定理的逆定理判定一个三角形是直角三角形的方法

(1)先确定最长边,算出最长边的平方;

(2)计算另两边的平方和;

(3)比较最长边的平方与另两边的平方和是否相等,若相等,则此三角形为直角三角形。

二、勾股定理的相关例题

以下列各组数为边长,能组成直角三角形的是___

A.1,2,3

B.2,3,4

C.3,4,5

D.4,5,6

答案:C

解析:因为$1^2+2^2≠3^2$,$2^2+3^2≠4^2$,$4^2+5^2≠6^2$,所以$A$,$B$,$D$都不能组成直角三角形。因为$3^2+4^2=5^2$,所以$C$能组成直角三角形。

相关推荐