若f(x)在定义域[a,b]上连续,或者放宽到常义可积(有限个第一类间断点),则f(x)在[a,b]上必然有界。判断函数...
一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k,即:y=kx+b(k≠0)(k不等于0,且k,b为常...
二次函数求根公式法:推导一下ax^2+bx+c=0的解。移项,ax^2+bx=-c两边除a,然后再配方,x^2+(b/a...
轮换对称性使用条件:只要积分区域关于y=x对称就可以使用轮换对称性,使用轮换对称性的目的是简化计算,通常可以配合极坐标使...
二阶常系数非齐次线性微分方程的表达式为y''+py'+qy=f(x),其特解y*设法分为:1.如...
arcsinx定义域[-1,1],值域y∈[-½π,½π]。反正弦函数为正弦函数y=sinx(x∈[-½π,½π])的反...
数学lg的计算方法:可以查对数函数表,或者用计算器。lg表示以10为底的对数函数,比如lg10=1,lg100=2。如果...
函数的复合过程:复合是叠置函数t=φ(x)与y=f(t)复合而成的函数y=f[φ(x)]叫复合函数。可见,两个函数复合不...
奇函数性质:1、图象关于原点对称;2、满足f(-x)=-f(x);3、关于原点对称的区间上单调性一致等;偶函数性质:1、...
1到9加减等于100的规律:先把100分解100=5*20,然后10,5和20各个击破,5已经是现成的,那么20呢,1+...
e的x分之一的左右极限:当x-->0+时,1/x-->正无穷,故e的x分之一次方-->正无穷;即此时极...
费马大定理证明过程:设:a=d^(n/2),b=h^(n/2),c=p^(n/2);则a^2+b^2=c^2就可以写成d...
dy/dx是y对x求导,而dx/dy是x对y求导。d是取无穷小量的意思,数学里边把它叫微分,dy就是对y取无穷小量,dx...
狄利克雷函数是周期函数证明:取T为任意一个确定的有理数,则当x是有理数时f(x)=1,且x+T是有理数,故f(x+T)=...
幂函数运算法则:同底数幂相乘,底数不变,指数相加,即a^m*a^n=a^(m+n);同底数幂相除,底数不变,指数相减,即...
log整体的平方算法:用泰勒展开,或者用T或B函数,在高数中会学到。log整体的平方是两个相同的对数式相乘的积。常用的表...
证明函数有界的步骤:证明有界的思路是:存在一个正数M,使对所有x,满足|f(x)|<M。证明无界的思路是:对任意正...
y=2sin3x的反函数是:y=1/3arcsin(x/2)。一般地,如果x与y关于某种对应关系f(x)相对应,y=f(...
在数学中,二次函数最高次必须为二次,二次函数表示形式为y=ax²+bx+c(a≠0)的多项式函数。二次函数的图像是一条对...
值域的求法有直接观察法、配方法、判别式法、图像法、单调性法、配方法、不等式法等。值域的求法化归法在解决问题的过程中,数学...