垂直平分线的判定
垂直平分线的判定:垂直平分线垂直且平分其所在线段。垂直平分线上任意一点,到线段两端点的距离相等。三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等。
判定方法
①利用定义:经过某一条线段的中点,并且垂直于这条线段的直线是线段的垂直平分线
②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.(即线段垂直平分线可以看成到线段两端点距离相等的点的集合)。
垂直平分线的性质定理
性质
1、垂直平分线垂直且平分其所在线段。
2、垂直平分线上任意一点,到线段两端点的距离相等。
3、三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等。
4、垂直平分线的判定:必须同时满足(1)直线过线段中点;(2)直线⊥线段。
定义
经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线,又称“中垂线”。
怎样画垂直平分线
用圆规,随便拉比所求线段1/2更长的距离,然后以线段两个端点为圆点画弧线,左边画右弧线,右边画左弧线,左右两边弧线相交在线段上下交于两点。两点相连,画出的就是线段的垂直平分线。这样做的原理是:菱形对角线垂直平分。