首页 高中数学

a的x次方的导数

2019-12-07 13:56

指数函数的求导公式:(a^x)'=(lna)(a^x),实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。

a的x次方的导数

推导过程

指数函数的求导公式:(a^x)'=(lna)(a^x)

求导证明:

y=a^x

两边同时取对数,得:lny=xlna

两边同时对x求导数,得:y'/y=lna

所以y'=ylna=a^xlna,得证

对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。

导数的求导法则

1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合。

2、两个函数的乘积的导函数:一导乘二+一乘二导。

3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方。

4、如果有复合函数,则用链式法则求导。

部分导数公式

1.y=c(c为常数) y'=0

2.y=x^n y'=nx^(n-1)

3.y=a^x;y'=a^xlna;y=e^x y'=e^x

4.y=logax y'=logae/x;y=lnx y'=1/x

5.y=sinx y'=cosx

6.y=cosx y'=-sinx

7.y=tanx y'=1/cos^2x

8.y=cotx y'=-1/sin^2x

相关推荐